
100 GOPS Reconfigurable Desktop
System for Embedded Applications

➤ Multi-million gates reconfigurable
desktop machine based on FPMCM

➤ C++ design entry bit-serial synthesis
system

➤ Visual programming for image
processing under Khoros system

➤ Reconfigurable system hardware:
➤ 1.6M-gate PC add-on board.

➤ 6M-gate desktop.
➤ A standardizable programming model
➤ Solve defense computing’s grand

challenge problems (SAR, ATR).
Ex. 2D FFT on 4Kx4K images in 1 sec

PI: Prof. Wayne Dai @UC Santa Cruz

➤ FPMCM-III(400k gates) design:06/98
➤ 1.6M-gate board design: 06/99
➤ Retarget C++ compiler system to

Khoros: 06/98
➤ Image processing library & grand

challenge applications: 06/98

Outline

➤Motivation and Objectives

➤Accomplishments: FPMCM-I, FPMCM-II, PCI

Board, Reconfigurable System.

➤Future Work: Hardware, Software, Applications

➤Demo

Motivation

TIER-2 surveillance system(272Mbit/sec)

➤ Solve large scale image processing problems.
 Case study: 2-D FFT on a 16 million samples image

(4096x4096 32-bit) in 1 second: 64Mbyte/sec

Why 6M-Gate Desktop

➤ 2D FFT on 4096x4096 images (32-bit/pixel):

➤ Mul = 16 N2log2N = 3 x 230

 Add = 4N2log2N = 0.75 x 230 in 1 second!
➤ Bases on bit-serial circuit, a 32-bit multiplier:

➤ needs 130 LE (logic element: 4-LUT and flip-flop);
➤ sampling rate is 2MHz.

➤ Result: Only consider multiplier, we need
 # of LE = 209,379
 If we use Flex10K100 (5000LEs): 41 FPGAs
➤ Consider adders and communications: 60

FPGAs.

Objectives

➤ Problem : FPGA-based systems today are
bulky, slow and expensive.

➤ Solution : Deliver more compact, more-tightly
coupled FPGA-systems using multi-chip
modules and vertical interconnect.

➤ Objective: Demonstrate the revolutionary
potential of MCM technology to create
massive FPLDs.

Objectives

➤ Approach : build next 2 generations of devices,
ending in 6 million gates FPMCM box..

Accomplishment: FPMCM-I

➤ 44k gates FPMCM-I
➤ 12 Xilinx 3042 FPGAs

connected by an Aptix
FPIC with 1024 IOs.

➤ FPGAs were rerouted
for low-cost flip-chip.

➤ 27MHz peak clock rate.
➤ 256 user IO.

➤ Silicon efficiency: 70%.
First silicon-on-silicon FPMCM

FPMCM-I Architecture

➤ Star architecture with some direct interconnect.
➤ Medium-sized FPGAs chosen to minimize cost

per logic resource.

Accomplishment: FPMCM-II

➤ 200k gates FPMCM-II: Composed of
4 Altera FLEX10K50.

FPMCM-II Architecture

➤ Clique Architecture

➤ Internal: 80 bits wide

➤ 64-bit to external

➤ Omit interconnection
chip such as Aptix in
FPMCM-I

➤ Drawback: fixed
connection

64

FPGA

FPGA

FPGA

FPGA

80

80

8080
80

80

64

64 64

Accomplishment: PCI Board

 Board Architecture

Host
Computer

Pentium

PCI BUS

FPMCM

PCI Controller AMCC

Debugging
Misc

EPF81188

32Kx32 32Kx32 Memory

Board Design

➤ The board can be plugged in the PCI bus of
the popular PC (Pentium 166).

➤ The commercial PCI controller AMCC is used
to reduce the risk during the early
development.

➤ Two Synchronous memory chips are
connected to the FPMCM.

➤ A standalone FPGA is used to implement
various diagnostic and monitoring functions.

Accomplishment: C++ Bit
Serial Synthesis System

C++ application software &
C++ datapath description

G++

C++ Executable
Behavioral model

Circuit generator
C++ bit-serial module library

Bit-serial pipeline synthesis:
Pipeline scheduling optimizer &

Circuit partitioner Partitioned XNF

design verification
(mixed-code simulation)

Why Bit Serial

➤ Most FPGAs are register rich. Bit serial pushes
routing away from "x" and "y" dimensions into
the "time" dimension. Place and route becomes
easy.

➤ By not having to worry about routing delays,
macros can be "soft" instead of "hard".

➤ Time-multiplexing makes the chip boundary less
restrictive.

➤ FPGA clock periods are heavily routing limited.
Bit serial logic naturally pipelines the
communication for minimum delays.

Why Bit Serial

Bit-serial Circuits Design

➤ Highly efficient bit-serial circuits have been
manually developed:
➤ adder, substractor, multiplier, comparator,

shifter, rounder, and saturater.

➤ Portable, open standard for user-generated

application specific libraries.

C++ Design Capture

➤ C++ description example (1D FIR filter):

void iD_FIR_core(Interface & bus,
Single x[], Single & y, Single a[],

double coef[], int filter_size, int &in, int &out)

{ set_signal_precision(16);
for(int i=0; i<filter_size; i++){

if(i==0){

x[i] = bus.read(in);
a[i] = x[i] * coef[i] + a[i-1];

} else{
x[i] = delay(x[i-1]);
a[i] = x[i] * coef[i] + a[i-1];

}
}
y = round(a[filter_size - 1]);
bus.write(out) = y;
clocker();}

IO interface

signal variables

software variables

signal input

signal output

increment sampling clock

Hardware
duplication
statement

Operator
overloading

Visual Programming
Based on Khoros

 Input glyphs, then get VHDL description

Visual Programming

Future: Software System

High-level Visual
Programming

High-level C++
programming

Circuit module
development system

(schematic entry,
C++ code generator)

Bit-serial pipeline synthesis

High-level synthesis package

circuit netlist

Mult-FPMCM layout synthesis
-chip partitioning and pin assignment
-inter-chip routing
-FPGA layout (vendor)

Newly added circuit library

Bit-serial circuit library

High-level function library

Future: Visual Programming

in 2D-FFT Filtering Hugh transform

Filter in C++ description:

for(int i=0; i<size; i++){

:
:
:

2D-IFFT

display

out

Future: Hardware Architecture

Future: Desktop System

Conclusions

➤ Reconfigurable Computing can approach custom
hardware performance, and can be re-targeted to
specific applications quickly and efficiently.

➤ High routability and low IO consumption of bit-
serial circuits are ideal for adoptive computing
system.

➤ Multi-million Gates Reconfigurable System, with
appropriate programming technology can
outperform multiprocessor based systems on a
large class of problems.

